Prof. Dr. Sebastian Pokutta

Vice President and Division Head
Mathematical Algorithmic Intelligence
AI in Society, Science, and Technology (AIS²T)
Zuse Institute Berlin (ZIB)

Professor for Optimization and Machine Learning
Institute of Mathematics
Electrical Engineering and Computer Science (courtesy)
Technische Universität Berlin

Recent Papers.

  1. Macdonald, J., Besançon, M., and Pokutta, S. (2021). Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings. Preprint. [arXiv]
  2. Tsuji, K., Tanaka, K., and Pokutta, S. (2021). Sparser Kernel Herding with Pairwise Conditional Gradients without Swap Steps. Preprint. [arXiv]
  3. Criado, F., Martinez-Rubio, D., and Pokutta, S. (2021). Fast Algorithms for Packing Proportional Fairness and its Dual. Preprint. [arXiv]
  4. Sofranac, B., Gleixner, A., and Pokutta, S. (2021). An Algorithm-Independent Measure of Progress for Linear Constraint Propagation. To Appear in Proceedings of International Conference on Principles and Practice of Constraint Programming. [arXiv] [video]
  5. Carderera, A., Besançon, M., and Pokutta, S. (2021). Simple steps are all you need: Frank-Wolfe and generalized self-concordant functions. To Appear in Proceedings of NeurIPS. [arXiv] [slides] [code]
  6. Roux, C., Wirth, E., Pokutta, S., and Kerdreux, T. (2021). Efficient Online-Bandit Strategies for Minimax Learning Problems. Preprint. [arXiv]
  7. Besançon, M., Carderera, A., and Pokutta, S. (2021). FrankWolfe.jl: a high-performance and flexible toolbox for Frank-Wolfe algorithms and Conditional Gradients. Preprint. [arXiv] [summary] [slides] [code]
  8. Kerdreux, T., Roux, C., d’Aspremont, A., and Pokutta, S. (2021). Linear Bandits on Uniformly Convex Sets. To Appear in Journal of Machine Learning Research (JMLR). [arXiv] [summary]
  9. Chmiela, A., Khalil, E., Gleixner, A., Lodi, A., and Pokutta, S. (2021). Learning to Schedule Heuristics in Branch-and-Bound. To Appear in Proceedings of NeurIPS. [arXiv] [summary]
  10. Kerdreux, T., d’Aspremont, A., and Pokutta, S. (2021). Local and Global Uniform Convexity Conditions. Preprint. [arXiv]
  11. Carderera, A., Diakonikolas, J., Lin, C. Y., and Pokutta, S. (2021). Parameter-free Locally Accelerated Conditional Gradients. To Appear in Proceedings of ICML. [arXiv] [slides]
  12. Pokutta, S. (2021). Mathematik, Machine Learning und Artificial Intelligence. To Appear in Mitteilungen Der DMV (German). [PDF]
  13. Braun, G., and Pokutta, S. (2021). Dual Prices for Frank-Wolfe Algorithms. Preprint. [arXiv]
  14. Carderera, A., Pokutta, S., Schütte, C., and Weiser, M. (2021). CINDy: Conditional gradient-based Identification of Non-linear Dynamics – Noise-robust recovery. Preprint. [arXiv] [summary]
  15. Kerdreux, T., d’Aspremont, A., and Pokutta, S. (2021). Projection-Free Optimization on Uniformly Convex Sets. To Appear in Proceedings of AISTATS. [arXiv] [summary] [slides]
  16. Combettes, C. W., and Pokutta, S. (2021). Complexity of Linear Minimization and Projection on Some Sets. To Appear in Operations Research Letters. [arXiv] [code]
  17. Combettes, C. W., Spiegel, C., and Pokutta, S. (2020). Projection-Free Adaptive Gradients for Large-Scale Optimization. Preprint. [arXiv] [summary] [code]

Select Recent Talks and Teaching.

Recent Blog Posts.