Research Lab

Select Recent Papers

(see publications for a complete list)

  1. Głuch, G., Turan, B., Nagarajan, S. G., and Pokutta, S. (2025). The Good, the Bad and the Ugly: Watermarks, Transferable Attacks and Adversarial Defenses. ICLR 2025 Workshop on GenAI Watermarking (WMARK). [arXiv] [summary] [poster] [conference] mlxai
  2. Lasby, M., Zimmer, M., Pokutta, S., and Schultheis, E. (2025). Compressed sparse tiles for memory-efficient unstructured and semi-structured sparsity. ICLR 2025 Workshop on Sparsity in LLMs (SLLM). [conference] hpcml
  3. Fackeldey, K., Kannan, A., Pokutta, S., Sharma, K., Walter, D., Walther, A., and Weiser, M. (Eds.). (2025). Mathematical Optimization for Machine Learning. de Gruyter. mlopt (Proceedings of MATH+ TES Summer Semester 2023)
  4. Troppens, H., Besançon, M., Wilken, S. E., and Pokutta, S. (2025). Mixed-Integer Optimization for Loopless Flux Distributions in Metabolic Networks. Preprint. [arXiv] ai4sciencebiochemistryopt
  5. Pauls, J., Zimmer, M., Turan, B., Saatchi, S., Ciais, P., Pokutta, S., and Gieseke, F. (2025). Capturing Temporal Dynamics in Large-Scale Canopy Tree Height Estimation. Preprint. [arXiv] [visuals] ai4sciencemlsustainability
  6. Hendrych, D., Besançon, M., Martínez-Rubio, D., and Pokutta, S. (2025). Secant Line Search for Frank-Wolfe Algorithms. Preprint. [arXiv] opt
  7. Martínez-Rubio, D., and Pokutta, S. (2025). Beyond Short Steps in Frank-Wolfe Algorithms. Preprint. [arXiv] mlopt
  8. Pelleriti, N., Zimmer, M., Wirth, E., and Pokutta, S. (2025). Approximating Latent Manifolds in Neural Networks via Vanishing Ideals. Preprint. [arXiv] compalgmltheory
  9. Martinez-Rubio, D., Roux, C., Criscitiello, C., and Pokutta, S. (2025). Accelerated Methods for Riemannian Min-Max Problems. To Appear in Proceedings of AISTATS. [arXiv] mlopt
  10. Roux, C., Martínez-Rubio, D., and Pokutta, S. (2025). Implicit Riemannian Optimism with Applications to Min-Max Problems. Preprint. [arXiv] mlopt
  11. Mundinger, K., Zimmer, M., Kiem, A., Spiegel, C., and Pokutta, S. (2025). Neural Discovery in Mathematics: Do Machines Dream of Colored Planes? Preprint. [arXiv] ai4sciencedggraphs
  12. Besançon, M., Designolle, S., Halbey, J., Hendrych, D., Kuzinowicz, D., Pokutta, S., Troppens, H., Viladrich Herrmannsdoerfer, D., and Wirth, E. (2025). Improved algorithms and novel applications of the FrankWolfe.jl library. Preprint. [arXiv] optsoftware
  13. Sadiku, S., Wagner, M., Nagarajan, S. G., and Pokutta, S. (2025). S-CFE: Simple Counterfactual Explanations. To Appear in Proceedings of AISTATS. [arXiv] mlxai
  14. Wirth, E., Besançon, M., and Pokutta, S. (2025). The Pivoting Framework: Frank-Wolfe Algorithms with Active Set Size Control. To Appear in Proceedings of AISTATS. [arXiv] mlopt (Oral Presentation + Conference Proceedings)
  15. Mexi, G., Kamp, D., Shinano, Y., Pu, S., Hoen, A., Bestuzheva, K., Hojny, C., Walter, M., Pfetsch, M. E., Pokutta, S., and Koch, T. (2025). State-of-the-art Methods for Pseudo-Boolean Solving with SCIP. Preprint. [arXiv] ipoptsoftware
  16. Roux, C., Zimmer, M., and Pokutta, S. (2025). On the Byzantine-Resilience of Distillation-Based Federated Learning. To Appear in Proceedings of ICLR. [arXiv] [summary] [code] mlopt
  17. Sadiku, S., Wagner, M., and Pokutta, S. (2025). Group-wise Sparse and Explainable Adversarial Attacks. To Appear in Proceedings of ICLR. [arXiv] [poster] ml
  18. Haase, J., and Pokutta, S. (2024). Human-AI Co-Creativity: Exploring Synergies Across Levels of Creative Collaboration. Preprint. [arXiv] haiimlsocial
  19. Głuch, G., Turan, B., Nagarajan, S. G., and Pokutta, S. (2024). The Good, the Bad and the Ugly: Watermarks, Transferable Attacks and Adversarial Defenses. Preprint. [arXiv] [summary] [poster] mlxai
  20. Designolle, S., Vértesi, T., and Pokutta, S. (2024). Better bounds on Grothendieck constants of finite orders. Preprint. [arXiv] optphysicsquantum
  21. Abbas, A., Ambainis, A., Augustino, B., Bärtschi, A., Buhrman, H., Coffrin, C., Cortiana, G., Dunjko, V., Egger, D. J., Elmegreen, B. G., Franco, N., Fratini, F., Fuller, B., Gacon, J., Gonciulea, C., Gribling, S., Gupta, S., Hadfield, S., Heese, R., … Zoufal, C. (2024). Quantum Optimization: Potential, Challenges, and the Path Forward. Nature Reviews Physics. [PDF] [arXiv] optphysicsquantumsurvey
  22. Wirth, E., Peña, J., and Pokutta, S. (2024). Fast Convergence of Frank-Wolfe algorithms on polytopes. Preprint. [arXiv] mlopt
  23. Pauls, J., Zimmer, M., Kelly, U. M., Schwartz, M., Saatchi, S., Ciais, P., Pokutta, S., Brandt, M., and Gieseke, F. (2024). Estimating Canopy Height at Scale. Proceedings of ICML. [arXiv] [code] [visuals] ai4sciencemlsustainability
  24. Mundinger, K., Zimmer, M., and Pokutta, S. (2024). Neural Parameter Regression for Explicit Representations of PDE Solution Operators. ICLR 2024 Workshop on AI4DifferentialEquations In Science. [PDF] [arXiv] [slides] [poster] ai4scienceml
  25. Pokutta, S. (2024). The Frank-Wolfe algorithm: a short introduction. Jahresbericht Der Deutschen Mathematiker-Vereinigung, 126, 3–35. [PDF] [arXiv] mlopt
  26. Braun, G., Carderera, A., Combettes, C. W., Hassani, H., Karbasi, A., Mokthari, A., and Pokutta, S. (2022). Conditional Gradient Methods. Preprint. [arXiv] mloptsurvey

Select Recent Talks and Teaching

Recent Blog Posts

Select Outreach

News