Research Lab

Select Recent Papers

(see publications for a complete list)

  1. Porto, L. E. A., Designolle, S., Pokutta, S., and Quintino, M. T. (2025). Measurement incompatibility and quantum steering via linear programming. Preprint. [arXiv] optphysicsquantum
  2. Haase, J., and Pokutta, S. (2025). Beyond Static Responses: Multi-Agent LLM Systems as a New Paradigm for Social Science Research. Preprint. [arXiv] haiimlsocial
  3. Halbey, J., Rakotomandimby, S., Besançon, M., Designolle, S., and Pokutta, S. (2025). Efficient Quadratic Corrections for Frank-Wolfe Algorithms. Preprint. [arXiv] fwopt
  4. Iommazzo, G., Martínez-Rubio, D., Criado, F., Wirth, E., and Pokutta, S. (2025). Linear Convergence of the Frank-Wolfe Algorithm over Product Polytopes. Preprint. [arXiv] mlopt
  5. Pauls, J., Zimmer, M., Turan, B., Saatchi, S., Ciais, P., Pokutta, S., and Gieseke, F. (2025). Capturing Temporal Dynamics in Large-Scale Canopy Tree Height Estimation. To Appear in Proceedings of ICML. [arXiv] [visuals] ai4sciencemlsustainability
  6. Hendrych, D., Besançon, M., Martínez-Rubio, D., and Pokutta, S. (2025). Secant Line Search for Frank-Wolfe Algorithms. To Appear in Proceedings of ICML. [arXiv] opt
  7. Urbano, A., Romero, D. W., Zimmer, M., and Pokutta, S. (2025). RECON: Robust symmetry discovery via Explicit Canonical Orientation Normalization. Preprint. [arXiv] mlsymmetry
  8. Wirth, E., Peña, J., and Pokutta, S. (2025). Adaptive Open-Loop Step-Sizes for Accelerated Convergence Rates of the Frank-Wolfe Algorithm. Preprint. [arXiv] mlopt
  9. Haase, J., Hanel, P. H. P., and Pokutta, S. (2025). S-DAT: A Multilingual, GenAI-Driven Framework for Automated Divergent Thinking Assessment. Preprint. [PDF] [arXiv] haiimlsocial
  10. Wirth, E., Peña, J., and Pokutta, S. (2025). Fast Convergence of Frank-Wolfe algorithms on polytopes. To Appear in Mathematics of Operations Research. [arXiv] mlopt
  11. Kera, H., Pelleriti, N., Ishihara, Y., Zimmer, M., and Pokutta, S. (2025). Computational Algebra with Attention: Transformer Oracles for Border Basis Algorithms. Preprint. [arXiv] ai4mathcompalgml
  12. Mundinger, K., Zimmer, M., Kiem, A., Spiegel, C., and Pokutta, S. (2025). Neural Discovery in Mathematics: Do Machines Dream of Colored Planes? To Appear in Proceedings of ICML. [arXiv] ai4mathai4sciencedggraphs (Oral Presentation + Conference Proceedings)
  13. Roux, C., Martínez-Rubio, D., and Pokutta, S. (2025). Implicit Riemannian Optimism with Applications to Min-Max Problems. To Appear in Proceedings of ICML. [arXiv] mlopt
  14. Pelleriti, N., Zimmer, M., Wirth, E., and Pokutta, S. (2025). Approximating Latent Manifolds in Neural Networks via Vanishing Ideals. To Appear in Proceedings of ICML. [arXiv] compalgmltheory
  15. Sadiku, S., Chitranshi, K., Kera, H., and Pokutta, S. (2025). Training on Plausible Counterfactuals Removes Spurious Correlations. Preprint. [arXiv] mlxai
  16. Hendrych, D., Troppens, H., Besançon, M., and Pokutta, S. (2025). Convex mixed-integer optimization with Frank-Wolfe methods. To Appear in Mathematical Programming Computation. [arXiv] [slides] [poster] [code] ipopt
  17. Haase, J., Klessascheck, F., Mendling, J., and Pokutta, S. (2025). Sustainability via LLM Right-sizing. Preprint. [arXiv] haiimlsustainability
  18. Haase, J., Hanel, P. H. P., and Pokutta, S. (2025). Has the Creativity of Large-Language Models peaked? An analysis of inter- and intra-LLM variability. Preprint. [arXiv] haiimlsocial
  19. Takahashi, S., Pokutta, S., and Takeda, A. (2025). Accelerated Convergence of Frank–Wolfe Algorithms with Adaptive Bregman Step-Size Strategy. Preprint. [arXiv] fwopt
  20. Sharma, U., Goel, K., Dua, A., Pokutta, S., and Woodstock, Z. (2025). A note on asynchronous Projective Splitting in Julia. Preprint. [arXiv] opt
  21. Troppens, H., Besançon, M., Wilken, S. E., and Pokutta, S. (2025). Mixed-Integer Optimization for Loopless Flux Distributions in Metabolic Networks. To Appear in Proceedings of Proceedings of Symposium on Experimental Algorithms (SEA) 2025. [arXiv] ai4sciencebiochemistryopt
  22. Zimmer, M., Spiegel, C., and Pokutta, S. (2025). Compression-aware Training of Neural Networks using Frank-Wolfe. In K. Fackeldey, A. Kannan, S. Pokutta, K. Sharma, D. Walter, A. Walther, and M. Weiser (Eds.), Mathematical Optimization for Machine Learning (pp. 137–168). De Gruyter. [PDF] [arXiv] mloptsparsity
  23. Głuch, G., Turan, B., Nagarajan, S. G., and Pokutta, S. (2025). The Good, the Bad and the Ugly: Watermarks, Transferable Attacks and Adversarial Defenses. Proceedings of ICLR 2025 Workshop on GenAI Watermarking (WMARK). [arXiv] [summary] [poster] [conference] mlxai
  24. Aigner, K.-M., Denzler, S., Liers, F., Pokutta, S., and Sharma, K. (2025). Scenario Reduction for Distributionally Robust Optimization. Preprint. [arXiv] optrobopt
  25. Carderera, A., Pokutta, S., Schütte, C., and Weiser, M. (2025). An efficient first-order conditional gradient algorithm in data-driven sparse identification of nonlinear dynamics to solve sparse recovery problems under noise. To Appear in Journal of Computational and Applied Mathematics. [PDF] [arXiv] [summary] ai4sciencemlopt
  26. Lasby, M., Zimmer, M., Pokutta, S., and Schultheis, E. (2025). Compressed sparse tiles for memory-efficient unstructured and semi-structured sparsity. Proceedings of ICLR 2025 Workshop on Sparsity in LLMs (SLLM). [PDF] [conference] hpcml
  27. Fackeldey, K., Kannan, A., Pokutta, S., Sharma, K., Walter, D., Walther, A., and Weiser, M. (Eds.). (2025). Mathematical Optimization for Machine Learning. de Gruyter. mlopt (Proceedings of MATH+ TES Summer Semester 2023)
  28. Martínez-Rubio, D., and Pokutta, S. (2025). Beyond Short Steps in Frank-Wolfe Algorithms. Preprint. [arXiv] mlopt
  29. Mexi, G., Kamp, D., Shinano, Y., Pu, S., Hoen, A., Bestuzheva, K., Hojny, C., Walter, M., Pfetsch, M. E., Pokutta, S., and Koch, T. (2025). State-of-the-art Methods for Pseudo-Boolean Solving with SCIP. Preprint. [arXiv] ipoptsoftware
  30. Sadiku, S., Wagner, M., and Pokutta, S. (2025). Group-wise Sparse and Explainable Adversarial Attacks. To Appear in Proceedings of ICLR. [arXiv] [poster] ml
  31. Wirth, E., Besançon, M., and Pokutta, S. (2025). The Pivoting Framework: Frank-Wolfe Algorithms with Active Set Size Control. To Appear in Proceedings of AISTATS. [arXiv] mlopt (Oral Presentation + Conference Proceedings)
  32. Braun, G., Carderera, A., Combettes, C. W., Hassani, H., Karbasi, A., Mokthari, A., and Pokutta, S. (2025). Conditional Gradient Methods. to appear in MOS-SIAM Series on Optimization. [arXiv] mloptsurvey
  33. Sadiku, S., Wagner, M., Nagarajan, S. G., and Pokutta, S. (2025). S-CFE: Simple Counterfactual Explanations. To Appear in Proceedings of AISTATS. [arXiv] mlxai
  34. Kerdreux, T., d’Aspremont, A., and Pokutta, S. (2025). Local and Global Uniform Convexity Conditions. To Appear in Special Issue of Fields Institute Communications. [arXiv] mlopt
  35. Besançon, M., Designolle, S., Halbey, J., Hendrych, D., Kuzinowicz, D., Pokutta, S., Troppens, H., Viladrich Herrmannsdoerfer, D., and Wirth, E. (2025). Improved algorithms and novel applications of the FrankWolfe.jl library. Preprint. [arXiv] optsoftware
  36. Carderera, A., and Pokutta, S. (2025). Second-order Conditional Gradient Sliding. To Appear in Special Issue of Fields Institute Communications. [arXiv] [summary] [code] mlopt
  37. Martinez-Rubio, D., Roux, C., Criscitiello, C., and Pokutta, S. (2025). Accelerated Methods for Riemannian Min-Max Problems. To Appear in Proceedings of AISTATS. [arXiv] mlopt
  38. Roux, C., Zimmer, M., and Pokutta, S. (2025). On the Byzantine-Resilience of Distillation-Based Federated Learning. To Appear in Proceedings of ICLR. [arXiv] [summary] [code] mlopt
  39. Haase, J., and Pokutta, S. (2024). Human-AI Co-Creativity: Exploring Synergies Across Levels of Creative Collaboration. Preprint. [arXiv] haiimlsocial
  40. Głuch, G., Turan, B., Nagarajan, S. G., and Pokutta, S. (2024). The Good, the Bad and the Ugly: Watermarks, Transferable Attacks and Adversarial Defenses. Preprint. [arXiv] [summary] [poster] mlxai
  41. Designolle, S., Vértesi, T., and Pokutta, S. (2024). Better bounds on Grothendieck constants of finite orders. Preprint. [arXiv] optphysicsquantum
  42. Abbas, A., Ambainis, A., Augustino, B., Bärtschi, A., Buhrman, H., Coffrin, C., Cortiana, G., Dunjko, V., Egger, D. J., Elmegreen, B. G., Franco, N., Fratini, F., Fuller, B., Gacon, J., Gonciulea, C., Gribling, S., Gupta, S., Hadfield, S., Heese, R., … Zoufal, C. (2024). Quantum Optimization: Potential, Challenges, and the Path Forward. Nature Reviews Physics. [PDF] [arXiv] optphysicsquantumsurvey
  43. Pauls, J., Zimmer, M., Kelly, U. M., Schwartz, M., Saatchi, S., Ciais, P., Pokutta, S., Brandt, M., and Gieseke, F. (2024). Estimating Canopy Height at Scale. Proceedings of ICML. [arXiv] [code] [visuals] ai4sciencemlsustainability
  44. Mundinger, K., Zimmer, M., and Pokutta, S. (2024). Neural Parameter Regression for Explicit Representations of PDE Solution Operators. ICLR 2024 Workshop on AI4DifferentialEquations In Science. [PDF] [arXiv] [slides] [poster] ai4scienceml
  45. Pokutta, S. (2024). The Frank-Wolfe algorithm: a short introduction. Jahresbericht Der Deutschen Mathematiker-Vereinigung, 126, 3–35. [PDF] [arXiv] mlopt

Select Recent Talks and Teaching

Recent Blog Posts

Select Outreach

News